Rewriter-Evaluator Framework for Neural Machine Translation

28 Sep 2020  ·  Yangming Li, Kaisheng Yao ·

Encoder-decoder architecture has been widely used in neural machine translation (NMT). A few methods have been proposed to improve it with multiple passes of decoding. However, their full potential is limited by a lack of appropriate termination policy. To address this issue, we present a novel framework, Rewriter-Evaluator. It consists of a rewriter and an evaluator. Translating a source sentence involves multiple passes. At every pass, the rewriter produces a new translation to improve the past translation and the evaluator estimates the translation quality to decide whether to terminate the rewriting process. We also propose a prioritized gradient descent (PGD) method that facilitates training the rewriter and the evaluator jointly. Though incurring multiple passes of decoding, Rewriter-Evaluator with the proposed PGD method can be trained with similar time to that of training encoder-decoder models. We apply the proposed framework to improve the general NMT models (e.g., Transformer). We conduct extensive experiments on two translation tasks, Chinese-English and English-German, and show that the proposed framework notably improves the performances of NMT models and significantly outperforms previous baselines.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here