RGB-D Salient Object Detection Based on Discriminative Cross-modal Transfer Learning

1 Mar 2017 Hao Chen Y. F. Li Dan Su

In this work, we propose to utilize Convolutional Neural Networks to boost the performance of depth-induced salient object detection by capturing the high-level representative features for depth modality. We formulate the depth-induced saliency detection as a CNN-based cross-modal transfer problem to bridge the gap between the "data-hungry" nature of CNNs and the unavailability of sufficient labeled training data in depth modality... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet