Ridesharing with Driver Location Preferences

30 May 2019Duncan Rheingans-YooScott Duke KominersHongyao MaDavid C. Parkes

We study revenue-optimal pricing and driver compensation in ridesharing platforms when drivers have heterogeneous preferences over locations. If a platform ignores drivers' location preferences, it may make inefficient trip dispatches; moreover, drivers may strategize so as to route towards their preferred locations... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet