Paper

Ridiculously Fast Shot Boundary Detection with Fully Convolutional Neural Networks

Shot boundary detection (SBD) is an important component of many video analysis tasks, such as action recognition, video indexing, summarization and editing. Previous work typically used a combination of low-level features like color histograms, in conjunction with simple models such as SVMs. Instead, we propose to learn shot detection end-to-end, from pixels to final shot boundaries. For training such a model, we rely on our insight that all shot boundaries are generated. Thus, we create a dataset with one million frames and automatically generated transitions such as cuts, dissolves and fades. In order to efficiently analyze hours of videos, we propose a Convolutional Neural Network (CNN) which is fully convolutional in time, thus allowing to use a large temporal context without the need to repeatedly processing frames. With this architecture our method obtains state-of-the-art results while running at an unprecedented speed of more than 120x real-time.

Results in Papers With Code
(↓ scroll down to see all results)