Riemannian block SPD coupling manifold and its application to optimal transport

30 Jan 2022  ·  Andi Han, Bamdev Mishra, Pratik Jawanpuria, Junbin Gao ·

In this work, we study the optimal transport (OT) problem between symmetric positive definite (SPD) matrix-valued measures. We formulate the above as a generalized optimal transport problem where the cost, the marginals, and the coupling are represented as block matrices and each component block is a SPD matrix. The summation of row blocks and column blocks in the coupling matrix are constrained by the given block-SPD marginals. We endow the set of such block-coupling matrices with a novel Riemannian manifold structure. This allows to exploit the versatile Riemannian optimization framework to solve generic SPD matrix-valued OT problems. We illustrate the usefulness of the proposed approach in several applications.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here