Riemannian Stochastic Gradient Descent for Tensor-Train Recurrent Neural Networks

ICLR 2019 Jun QiChin-Hui LeeJavier Tejedor

The Tensor-Train factorization (TTF) is an efficient way to compress large weight matrices of fully-connected layers and recurrent layers in recurrent neural networks (RNNs). However, high Tensor-Train ranks for all the core tensors of parameters need to be element-wise fixed, which results in an unnecessary redundancy of model parameters... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet