Riemannian Tensor Completion with Side Information

12 Nov 2016  ·  Tengfei Zhou, Hui Qian, Zebang Shen, Congfu Xu ·

By restricting the iterate on a nonlinear manifold, the recently proposed Riemannian optimization methods prove to be both efficient and effective in low rank tensor completion problems. However, existing methods fail to exploit the easily accessible side information, due to their format mismatch. Consequently, there is still room for improvement in such methods. To fill the gap, in this paper, a novel Riemannian model is proposed to organically integrate the original model and the side information by overcoming their inconsistency. For this particular model, an efficient Riemannian conjugate gradient descent solver is devised based on a new metric that captures the curvature of the objective.Numerical experiments suggest that our solver is more accurate than the state-of-the-art without compromising the efficiency.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here