Multi-Temporal Convolutions for Human Action Recognition in Videos

8 Nov 2020  ·  Alexandros Stergiou, Ronald Poppe ·

Effective extraction of temporal patterns is crucial for the recognition of temporally varying actions in video. We argue that the fixed-sized spatio-temporal convolution kernels used in convolutional neural networks (CNNs) can be improved to extract informative motions that are executed at different time scales. To address this challenge, we present a novel spatio-temporal convolution block that is capable of extracting spatio-temporal patterns at multiple temporal resolutions. Our proposed multi-temporal convolution (MTConv) blocks utilize two branches that focus on brief and prolonged spatio-temporal patterns, respectively. The extracted time-varying features are aligned in a third branch, with respect to global motion patterns through recurrent cells. The proposed blocks are lightweight and can be integrated into any 3D-CNN architecture. This introduces a substantial reduction in computational costs. Extensive experiments on Kinetics, Moments in Time and HACS action recognition benchmark datasets demonstrate competitive performance of MTConvs compared to the state-of-the-art with a significantly lower computational footprint.

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.