Riposte! A Large Corpus of Counter-Arguments

8 Oct 2019  ·  Paul Reisert, Benjamin Heinzerling, Naoya Inoue, Shun Kiyono, Kentaro Inui ·

Constructive feedback is an effective method for improving critical thinking skills. Counter-arguments (CAs), one form of constructive feedback, have been proven to be useful for critical thinking skills. However, little work has been done for constructing a large-scale corpus of them which can drive research on automatic generation of CAs for fallacious micro-level arguments (i.e. a single claim and premise pair). In this work, we cast providing constructive feedback as a natural language processing task and create Riposte!, a corpus of CAs, towards this goal. Produced by crowdworkers, Riposte! contains over 18k CAs. We instruct workers to first identify common fallacy types and produce a CA which identifies the fallacy. We analyze how workers create CAs and construct a baseline model based on our analysis.

PDF Abstract
No code implementations yet. Submit your code now



Introduced in the Paper:


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here