Robsut Wrod Reocginiton via semi-Character Recurrent Neural Network

7 Aug 2016  ·  Keisuke Sakaguchi, Kevin Duh, Matt Post, Benjamin Van Durme ·

Language processing mechanism by humans is generally more robust than computers. The Cmabrigde Uinervtisy (Cambridge University) effect from the psycholinguistics literature has demonstrated such a robust word processing mechanism, where jumbled words (e.g. Cmabrigde / Cambridge) are recognized with little cost. On the other hand, computational models for word recognition (e.g. spelling checkers) perform poorly on data with such noise. Inspired by the findings from the Cmabrigde Uinervtisy effect, we propose a word recognition model based on a semi-character level recurrent neural network (scRNN). In our experiments, we demonstrate that scRNN has significantly more robust performance in word spelling correction (i.e. word recognition) compared to existing spelling checkers and character-based convolutional neural network. Furthermore, we demonstrate that the model is cognitively plausible by replicating a psycholinguistics experiment about human reading difficulty using our model.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here