Robust Canonical Time Warping for the Alignment of Grossly Corrupted Sequences

CVPR 2013 Yannis PanagakisMihalis A. NicolaouStefanos ZafeiriouMaja Pantic

Temporal alignment of human behaviour from visual data is a very challenging problem due to a numerous reasons, including possible large temporal scale differences, inter/intra subject variability and, more importantly, due to the presence of gross errors and outliers. Gross errors are often in abundance due to incorrect localization and tracking, presence of partial occlusion etc... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet