Robust Covariate Shift Prediction with General Losses and Feature Views

28 Dec 2017  ·  Anqi Liu, Brian D. Ziebart ·

Covariate shift relaxes the widely-employed independent and identically distributed (IID) assumption by allowing different training and testing input distributions. Unfortunately, common methods for addressing covariate shift by trying to remove the bias between training and testing distributions using importance weighting often provide poor performance guarantees in theory and unreliable predictions with high variance in practice. Recently developed methods that construct a predictor that is inherently robust to the difficulties of learning under covariate shift are restricted to minimizing logloss and can be too conservative when faced with high-dimensional learning tasks. We address these limitations in two ways: by robustly minimizing various loss functions, including non-convex ones, under the testing distribution; and by separately shaping the influence of covariate shift according to different feature-based views of the relationship between input variables and example labels. These generalizations make robust covariate shift prediction applicable to more task scenarios. We demonstrate the benefits on classification under covariate shift tasks.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here