Robust covariance estimation is the following, well-studied problem in high dimensional statistics: given $N$ samples from a $d$-dimensional Gaussian $\mathcal{N}(\boldsymbol{0}, \Sigma)$, but where an $\varepsilon$-fraction of the samples have been arbitrarily corrupted, output $\widehat{\Sigma}$ minimizing the total variation distance between $\mathcal{N}(\boldsymbol{0}, \Sigma)$ and $\mathcal{N}(\boldsymbol{0}, \widehat{\Sigma})$. This corresponds to learning $\Sigma$ in a natural affine-invariant variant of the Frobenius norm known as the \emph{Mahalanobis norm}... (read more)

PDF
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.

METHOD | TYPE | |
---|---|---|

🤖 No Methods Found | Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet |