Robust Kalman filter-based dynamic state estimation of natural gas pipeline networks

26 Feb 2021  ·  Liang Chen, Peng Jin, Jing Yang, Yang Li, Yi Song ·

To obtain the accurate transient states of the big scale natural gas pipeline networks under the bad data and non-zero mean noises conditions, a robust Kalman filter-based dynamic state estimation method is proposed using the linearized gas pipeline transient flow equations in this paper. Firstly, the dynamic state estimation model is built. Since the gas pipeline transient flow equations are less than the states, the boundary conditions are used as supplementary constraints to predict the transient states. To increase the measurement redundancy, the zero mass flow rate constraints at the sink nodes are taken as virtual measurements. Secondly, to ensure the stability under bad data condition, the robust Kalman filter algorithm is proposed by introducing a time-varying scalar matrix to regulate the measurement error variances correctly according to the innovation vector at every time step. At last, the proposed method is applied to a 30-node gas pipeline networks in several kinds of measurement conditions. The simulation shows that the proposed robust dynamic state estimation can decrease the effects of bad data and achieve better estimating results.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here