Robust Localized Multi-view Subspace Clustering

22 May 2017  ·  Yanbo Fan, Jian Liang, Ran He, Bao-Gang Hu, Siwei Lyu ·

In multi-view clustering, different views may have different confidence levels when learning a consensus representation. Existing methods usually address this by assigning distinctive weights to different views. However, due to noisy nature of real-world applications, the confidence levels of samples in the same view may also vary. Thus considering a unified weight for a view may lead to suboptimal solutions. In this paper, we propose a novel localized multi-view subspace clustering model that considers the confidence levels of both views and samples. By assigning weight to each sample under each view properly, we can obtain a robust consensus representation via fusing the noiseless structures among views and samples. We further develop a regularizer on weight parameters based on the convex conjugacy theory, and samples weights are determined in an adaptive manner. An efficient iterative algorithm is developed with a convergence guarantee. Experimental results on four benchmarks demonstrate the correctness and effectiveness of the proposed model.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here