Robust Pollen Imagery Classification with Generative Modeling and Mixup Training

25 Feb 2021  ·  Jaideep Murkute ·

Deep learning approaches have shown great success in image classification tasks and can aid greatly towards the fast and reliable classification of pollen grain aerial imagery. However, often-times deep learning methods in the setting of natural images can suffer generalization problems and yield poor performance on unseen test distribution. In this work, we present and a robust deep learning framework that can generalize well for pollen grain aerobiological imagery classification. We develop a convolutional neural network-based pollen grain classification approach and combine some of the best practices in deep learning for better generalization. In addition to commonplace approaches like data-augmentation and weight regularization, we utilize implicit regularization methods like manifold mixup to allow learning of smoother decision boundaries. We also make use of proven state-of-the-art architectural choices like EfficientNet convolutional neural networks. Inspired by the success of generative modeling with variational autoencoders, we train models with a richer learning objective which can allow the model to focus on the relevant parts of the image. Finally, we create an ensemble of neural networks, for the robustness of the test set predictions. Based on our experiments, we show improved generalization performance as measured with a weighted F1-score with the aforementioned approaches. The proposed approach earned a fourth-place in the final rankings in the ICPR-2020 Pollen Grain Classification Challenge; with a 0.972578 weighted F1 score,0.950828 macro average F1 scores, and 0.972877 recognition accuracy.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods