We consider the problem of robust polynomial regression, where one receives samples $(x_i, y_i)$ that are usually within $\sigma$ of a polynomial $y = p(x)$, but have a $\rho$ chance of being arbitrary adversarial outliers. Previously, it was known how to efficiently estimate $p$ only when $\rho < \frac{1}{\log d}$... (read more)
PDFMETHOD | TYPE | |
---|---|---|
🤖 No Methods Found | Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet |