Robust Saliency Detection via Regularized Random Walks Ranking

CVPR 2015 Changyang LiYuchen YuanWeidong CaiYong XiaDavid Dagan Feng

In the field of saliency detection, many graph-based algorithms heavily depend on the accuracy of the pre-processed superpixel segmentation, which leads to significant sacrifice of detail information from the input image. In this paper, we propose a novel bottom-up saliency detection approach that takes advantage of both region-based features and image details... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet