Robust Semantic Segmentation in Adverse Weather Conditions by means of Sensor Data Fusion

24 May 2019Andreas PfeufferKlaus Dietmayer

A robust and reliable semantic segmentation in adverse weather conditions is very important for autonomous cars, but most state-of-the-art approaches only achieve high accuracy rates in optimal weather conditions. The reason is that they are only optimized for good weather conditions and given noise models... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet