Robust Time-Frequency Reconstruction by Learning Structured Sparsity

30 Apr 2020  ·  Lei Jiang, Haijian Zhang, Lei Yu ·

Time-frequency distributions (TFDs) play a vital role in providing descriptive analysis of non-stationary signals involved in realistic scenarios. It is well known that low time-frequency (TF) resolution and the emergency of cross-terms (CTs) are two main issues, which make it difficult to analyze and interpret practical signals using TFDs. In order to address these issues, we propose the U-Net aided iterative shrinkage-thresholding algorithm (U-ISTA) for reconstructing a near-ideal TFD by exploiting structured sparsity in signal TF domain. Specifically, the signal ambiguity function is firstly compressed, followed by unfolding the ISTA as a recurrent neural network. To consider continuously distributed characteristics of signals, a structured sparsity constraint is incorporated into the unfolded ISTA by regarding the U-Net as an adaptive threshold block, in which structure-aware thresholds are learned from enormous training data to exploit the underlying dependencies among neighboring TF coefficients. The proposed U-ISTA model is trained by both non-overlapped and overlapped synthetic signals including closely and far located non-stationary components. Experimental results demonstrate that the robust U-ISTA achieves superior performance compared with state-of-the-art algorithms, and gains a high TF resolution with CTs greatly eliminated even in low signal-to-noise ratio (SNR) environments.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods