Robustness and Visual Explanation for Black Box Image, Video, and ECG Signal Classification with Reinforcement Learning

We present a generic Reinforcement Learning (RL) framework optimized for crafting adversarial attacks on different model types spanning from ECG signal analysis (1D), image classification (2D), and video classification (3D). The framework focuses on identifying sensitive regions and inducing misclassifications with minimal distortions and various distortion types. The novel RL method outperforms state-of-the-art methods for all three applications, proving its efficiency. Our RL approach produces superior localization masks, enhancing interpretability for image classification and ECG analysis models. For applications such as ECG analysis, our platform highlights critical ECG segments for clinicians while ensuring resilience against prevalent distortions. This comprehensive tool aims to bolster both resilience with adversarial training and transparency across varied applications and data types.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here