Romanian Diacritics Restoration Using Recurrent Neural Networks

6 Sep 2020  ·  Stefan Ruseti, Teodor-Mihai Cotet, Mihai Dascalu ·

Diacritics restoration is a mandatory step for adequately processing Romanian texts, and not a trivial one, as you generally need context in order to properly restore a character. Most previous methods which were experimented for Romanian restoration of diacritics do not use neural networks. Among those that do, there are no solutions specifically optimized for this particular language (i.e., they were generally designed to work on many different languages). Therefore we propose a novel neural architecture based on recurrent neural networks that can attend information at different levels of abstractions in order to restore diacritics.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here