Paper

RoseLoRA: Row and Column-wise Sparse Low-rank Adaptation of Pre-trained Language Model for Knowledge Editing and Fine-tuning

Pre-trained language models, trained on large-scale corpora, demonstrate strong generalizability across various NLP tasks. Fine-tuning these models for specific tasks typically involves updating all parameters, which is resource-intensive. Parameter-efficient fine-tuning (PEFT) methods, such as the popular LoRA family, introduce low-rank matrices to learn only a few parameters efficiently. However, during inference, the product of these matrices updates all pre-trained parameters, complicating tasks like knowledge editing that require selective updates. We propose a novel PEFT method, which conducts \textbf{r}ow and c\textbf{o}lumn-wise spar\textbf{se} \textbf{lo}w-\textbf{r}ank \textbf{a}daptation (RoseLoRA), to address this challenge. RoseLoRA identifies and updates only the most important parameters for a specific task, maintaining efficiency while preserving other model knowledge. By adding a sparsity constraint on the product of low-rank matrices and converting it to row and column-wise sparsity, we ensure efficient and precise model updates. Our theoretical analysis guarantees the lower bound of the sparsity with respective to the matrix product. Extensive experiments on five benchmarks across twenty datasets demonstrate that RoseLoRA outperforms baselines in both general fine-tuning and knowledge editing tasks.

Results in Papers With Code
(↓ scroll down to see all results)