Rotate King to get Queen: Word Relationships as Orthogonal Transformations in Embedding Space

IJCNLP 2019 Kawin Ethayarajh

A notable property of word embeddings is that word relationships can exist as linear substructures in the embedding space. For example, $\textit{gender}$ corresponds to $\vec{\textit{woman}} - \vec{\textit{man}}$ and $\vec{\textit{queen}} - \vec{\textit{king}}$... (read more)

PDF Abstract IJCNLP 2019 PDF IJCNLP 2019 Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet