RRA: Recurrent Residual Attention for Sequence Learning

12 Sep 2017  ·  Cheng Wang ·

In this paper, we propose a recurrent neural network (RNN) with residual attention (RRA) to learn long-range dependencies from sequential data. We propose to add residual connections across timesteps to RNN, which explicitly enhances the interaction between current state and hidden states that are several timesteps apart. This also allows training errors to be directly back-propagated through residual connections and effectively alleviates gradient vanishing problem. We further reformulate an attention mechanism over residual connections. An attention gate is defined to summarize the individual contribution from multiple previous hidden states in computing the current state. We evaluate RRA on three tasks: the adding problem, pixel-by-pixel MNIST classification and sentiment analysis on the IMDB dataset. Our experiments demonstrate that RRA yields better performance, faster convergence and more stable training compared to a standard LSTM network. Furthermore, RRA shows highly competitive performance to the state-of-the-art methods.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods