Run, Forest, Run? On Randomization and Reproducibility in Predictive Software Engineering

15 Dec 2020  ·  Cynthia C. S. Liem, Annibale Panichella ·

Machine learning (ML) has been widely used in the literature to automate software engineering tasks. However, ML outcomes may be sensitive to randomization in data sampling mechanisms and learning procedures. To understand whether and how researchers in SE address these threats, we surveyed 45 recent papers related to three predictive tasks: defect prediction (DP), predictive mutation testing (PMT), and code smell detection (CSD). We found that less than 50% of the surveyed papers address the threats related to randomized data sampling (via multiple repetitions); only 8% of the papers address the random nature of ML; and parameter values are rarely reported (only 18% of the papers). To assess the severity of these threats, we conducted an empirical study using 26 real-world datasets commonly considered for the three predictive tasks of interest, considering eight common supervised ML classifiers. We show that different data resamplings for 10-fold cross-validation lead to extreme variability in observed performance results. Furthermore, randomized ML methods also show non-negligible variability for different choices of random seeds. More worryingly, performance and variability are inconsistent for different implementations of the conceptually same ML method in different libraries, as also shown through multi-dataset pairwise comparison. To cope with these critical threats, we provide practical guidelines on how to validate, assess, and report the results of predictive methods.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Software Engineering

Datasets


  Add Datasets introduced or used in this paper