Running Neural Networks on the NIC

In this paper we show that the data plane of commodity programmable (Network Interface Cards) NICs can run neural network inference tasks required by packet monitoring applications, with low overhead. This is particularly important as the data transfer costs to the host system and dedicated machine learning accelerators, e.g., GPUs, can be more expensive than the processing task itself. We design and implement our system -- N3IC -- on two different NICs and we show that it can greatly benefit three different network monitoring use cases that require machine learning inference as first-class-primitive. N3IC can perform inference for millions of network flows per second, while forwarding traffic at 40Gb/s. Compared to an equivalent solution implemented on a general purpose CPU, N3IC can provide 100x lower processing latency, with 1.5x increase in throughput.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here