$S^{2}$-LBI: Stochastic Split Linearized Bregman Iterations for Parsimonious Deep Learning

24 Apr 2019  ·  Yanwei Fu, Donghao Li, Xinwei Sun, Shun Zhang, Yizhou Wang, Yuan YAO ·

This paper proposes a novel Stochastic Split Linearized Bregman Iteration ($S^{2}$-LBI) algorithm to efficiently train the deep network. The $S^{2}$-LBI introduces an iterative regularization path with structural sparsity. Our $S^{2}$-LBI combines the computational efficiency of the LBI, and model selection consistency in learning the structural sparsity. The computed solution path intrinsically enables us to enlarge or simplify a network, which theoretically, is benefited from the dynamics property of our $S^{2}$-LBI algorithm. The experimental results validate our $S^{2}$-LBI on MNIST and CIFAR-10 dataset. For example, in MNIST, we can either boost a network with only 1.5K parameters (1 convolutional layer of 5 filters, and 1 FC layer), achieves 98.40\% recognition accuracy; or we simplify $82.5\%$ of parameters in LeNet-5 network, and still achieves the 98.47\% recognition accuracy. In addition, we also have the learning results on ImageNet, which will be added in the next version of our report.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here