SAdam: A Variant of Adam for Strongly Convex Functions

ICLR 2020 Guanghui WangShiyin LuWeiwei TuLijun Zhang

The Adam algorithm has become extremely popular for large-scale machine learning. Under convexity condition, it has been proved to enjoy a data-dependant $O(\sqrt{T})$ regret bound where $T$ is the time horizon... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper