Safe Adaptive Importance Sampling

Importance sampling has become an indispensable strategy to speed up optimization algorithms for large-scale applications. Improved adaptive variants - using importance values defined by the complete gradient information which changes during optimization - enjoy favorable theoretical properties, but are typically computationally infeasible... In this paper we propose an efficient approximation of gradient-based sampling, which is based on safe bounds on the gradient. The proposed sampling distribution is (i) provably the best sampling with respect to the given bounds, (ii) always better than uniform sampling and fixed importance sampling and (iii) can efficiently be computed - in many applications at negligible extra cost. The proposed sampling scheme is generic and can easily be integrated into existing algorithms. In particular, we show that coordinate-descent (CD) and stochastic gradient descent (SGD) can enjoy significant a speed-up under the novel scheme. The proven efficiency of the proposed sampling is verified by extensive numerical testing. read more

PDF Abstract NeurIPS 2017 PDF NeurIPS 2017 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here