Safe Learning of Quadrotor Dynamics Using Barrier Certificates

16 Oct 2017  ·  Li Wang, Evangelos A. Theodorou, Magnus Egerstedt ·

To effectively control complex dynamical systems, accurate nonlinear models are typically needed. However, these models are not always known. In this paper, we present a data-driven approach based on Gaussian processes that learns models of quadrotors operating in partially unknown environments. What makes this challenging is that if the learning process is not carefully controlled, the system will go unstable, i.e., the quadcopter will crash. To this end, barrier certificates are employed for safe learning. The barrier certificates establish a non-conservative forward invariant safe region, in which high probability safety guarantees are provided based on the statistics of the Gaussian Process. A learning controller is designed to efficiently explore those uncertain states and expand the barrier certified safe region based on an adaptive sampling scheme. In addition, a recursive Gaussian Process prediction method is developed to learn the complex quadrotor dynamics in real-time. Simulation results are provided to demonstrate the effectiveness of the proposed approach.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods