Safe Reinforcement Learning via Projection on a Safe Set: How to Achieve Optimality?

2 Apr 2020  ·  Sebastien Gros, Mario Zanon, Alberto Bemporad ·

For all its successes, Reinforcement Learning (RL) still struggles to deliver formal guarantees on the closed-loop behavior of the learned policy. Among other things, guaranteeing the safety of RL with respect to safety-critical systems is a very active research topic. Some recent contributions propose to rely on projections of the inputs delivered by the learned policy into a safe set, ensuring that the system safety is never jeopardized. Unfortunately, it is unclear whether this operation can be performed without disrupting the learning process. This paper addresses this issue. The problem is analysed in the context of $Q$-learning and policy gradient techniques. We show that the projection approach is generally disruptive in the context of $Q$-learning though a simple alternative solves the issue, while simple corrections can be used in the context of policy gradient methods in order to ensure that the policy gradients are unbiased. The proposed results extend to safe projections based on robust MPC techniques.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here