Safe Screening for the Generalized Conditional Gradient Method

22 Feb 2020  ·  Yifan Sun, Francis Bach ·

The conditional gradient method (CGM) has been widely used for fast sparse approximation, having a low per iteration computational cost for structured sparse regularizers. We explore the sparsity acquiring properties of a generalized CGM (gCGM), where the constraint is replaced by a penalty function based on a gauge penalty; this can be done without significantly increasing the per-iteration computation, and applies to general notions of sparsity. Without assuming bounded iterates, we show $O(1/t)$ convergence of the function values and gap of gCGM. We couple this with a safe screening rule, and show that at a rate $O(1/(t\delta^2))$, the screened support matches the support at the solution, where $\delta \geq 0$ measures how close the problem is to being degenerate. In our experiments, we show that the gCGM for these modified penalties have similar feature selection properties as common penalties, but with potentially more stability over the choice of hyperparameter.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods