The conditional gradient method (CGM) has been widely used for fast sparse approximation, having a low per iteration computational cost for structured sparse regularizers. We explore the sparsity acquiring properties of a generalized CGM (gCGM), where the constraint is replaced by a penalty function based on a gauge penalty; this can be done without significantly increasing the per-iteration computation, and applies to general notions of sparsity... (read more)
PDFMETHOD | TYPE | |
---|---|---|
🤖 No Methods Found | Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet |