Safe Screening for the Generalized Conditional Gradient Method

22 Feb 2020 Yifan Sun Francis Bach

The conditional gradient method (CGM) has been widely used for fast sparse approximation, having a low per iteration computational cost for structured sparse regularizers. We explore the sparsity acquiring properties of a generalized CGM (gCGM), where the constraint is replaced by a penalty function based on a gauge penalty; this can be done without significantly increasing the per-iteration computation, and applies to general notions of sparsity... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet