SAFE: Self-Adjustment Federated Learning Framework for Remote Sensing Collaborative Perception

25 Mar 2025  ·  Xiaohe Li, Haohua Wu, Jiahao Li, Zide Fan, Kaixin Zhang, Xinming Li, Yunping Ge, Xinyu Zhao ·

The rapid increase in remote sensing satellites has led to the emergence of distributed space-based observation systems. However, existing distributed remote sensing models often rely on centralized training, resulting in data leakage, communication overhead, and reduced accuracy due to data distribution discrepancies across platforms. To address these challenges, we propose the \textit{Self-Adjustment FEderated Learning} (SAFE) framework, which innovatively leverages federated learning to enhance collaborative sensing in remote sensing scenarios. SAFE introduces four key strategies: (1) \textit{Class Rectification Optimization}, which autonomously addresses class imbalance under unknown local and global distributions. (2) \textit{Feature Alignment Update}, which mitigates Non-IID data issues via locally controlled EMA updates. (3) \textit{Dual-Factor Modulation Rheostat}, which dynamically balances optimization effects during training. (4) \textit{Adaptive Context Enhancement}, which is designed to improve model performance by dynamically refining foreground regions, ensuring computational efficiency with accuracy improvement across distributed satellites. Experiments on real-world image classification and object segmentation datasets validate the effectiveness and reliability of the SAFE framework in complex remote sensing scenarios.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here