Uniformly Conservative Exploration in Reinforcement Learning

25 Oct 2021  ·  Wanqiao Xu, Jason Yecheng Ma, Kan Xu, Hamsa Bastani, Osbert Bastani ·

A key challenge to deploying reinforcement learning in practice is avoiding excessive (harmful) exploration in individual episodes. We propose a natural constraint on exploration -- \textit{uniformly} outperforming a conservative policy (adaptively estimated from all data observed thus far), up to a per-episode exploration budget. We design a novel algorithm that uses a UCB reinforcement learning policy for exploration, but overrides it as needed to satisfy our exploration constraint with high probability. Importantly, to ensure unbiased exploration across the state space, our algorithm adaptively determines when to explore. We prove that our approach remains conservative while minimizing regret in the tabular setting. We experimentally validate our results on a sepsis treatment task and an HIV treatment task, demonstrating that our algorithm can learn while ensuring good performance compared to the baseline policy for every patient; the latter task also demonstrates that our approach extends to continuous state spaces via deep reinforcement learning.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here