Safety Embedded Control of Nonlinear Systems via Barrier States

20 Feb 2021  ·  Hassan Almubarak, Nader Sadegh, Evangelos A. Theodorou ·

In many safety-critical control systems, possibly opposing safety restrictions and control performance objectives arise. To confront such a conflict, this letter proposes a novel methodology that embeds safety into stability of control systems. The development enforces safety by means of barrier functions used in optimization through the construction of barrier states (BaS) which are embedded in the control system's model. As a result, as long as the equilibrium point of interest of the closed loop system is asymptotically stable, the generated trajectories are guaranteed to be safe. Consequently, a conflict between control objectives and safety constraints is substantially avoided. To show the efficacy of the proposed technique, we employ barrier states with the simple pole placement method to design safe linear controls. Nonlinear optimal control is subsequently employed to fulfill safety, stability and performance objectives by solving the associated Hamilton-Jacobi-Bellman (HJB) which minimizes a cost functional that can involve the BaS. Following this further, we exploit optimal control with barrier states on an unstable, constrained second dimensional pendulum on a cart model that is desired to avoid low velocities regions where the system may exhibit some controllability loss and on two mobile robots to safely arrive to opposite targets with an obstacle on the way.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here