Sample Complexity of Episodic Fixed-Horizon Reinforcement Learning

NeurIPS 2015  ·  Christoph Dann, Emma Brunskill ·

Recently, there has been significant progress in understanding reinforcement learning in discounted infinite-horizon Markov decision processes (MDPs) by deriving tight sample complexity bounds. However, in many real-world applications, an interactive learning agent operates for a fixed or bounded period of time, for example tutoring students for exams or handling customer service requests. Such scenarios can often be better treated as episodic fixed-horizon MDPs, for which only looser bounds on the sample complexity exist. A natural notion of sample complexity in this setting is the number of episodes required to guarantee a certain performance with high probability (PAC guarantee). In this paper, we derive an upper PAC bound $\tilde O(\frac{|\mathcal S|^2 |\mathcal A| H^2}{\epsilon^2} \ln\frac 1 \delta)$ and a lower PAC bound $\tilde \Omega(\frac{|\mathcal S| |\mathcal A| H^2}{\epsilon^2} \ln \frac 1 {\delta + c})$ that match up to log-terms and an additional linear dependency on the number of states $|\mathcal S|$. The lower bound is the first of its kind for this setting. Our upper bound leverages Bernstein's inequality to improve on previous bounds for episodic finite-horizon MDPs which have a time-horizon dependency of at least $H^3$.

PDF Abstract NeurIPS 2015 PDF NeurIPS 2015 Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here