Sample Efficient Policy Gradient Methods with Recursive Variance Reduction

ICLR 2020  ·  Pan Xu, Felicia Gao, Quanquan Gu ·

Improving the sample efficiency in reinforcement learning has been a long-standing research problem. In this work, we aim to reduce the sample complexity of existing policy gradient methods. We propose a novel policy gradient algorithm called SRVR-PG, which only requires $O(1/\epsilon^{3/2})$ episodes to find an $\epsilon$-approximate stationary point of the nonconcave performance function $J(\boldsymbol{\theta})$ (i.e., $\boldsymbol{\theta}$ such that $\|\nabla J(\boldsymbol{\theta})\|_2^2\leq\epsilon$). This sample complexity improves the existing result $O(1/\epsilon^{5/3})$ for stochastic variance reduced policy gradient algorithms by a factor of $O(1/\epsilon^{1/6})$. In addition, we also propose a variant of SRVR-PG with parameter exploration, which explores the initial policy parameter from a prior probability distribution. We conduct numerical experiments on classic control problems in reinforcement learning to validate the performance of our proposed algorithms.

PDF Abstract ICLR 2020 PDF ICLR 2020 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here