Says Who\ldots? Identification of Expert versus Layman Critics' Reviews of Documentary Films

COLING 2016 Ming JiangJana Diesner

We extend classic review mining work by building a binary classifier that predicts whether a review of a documentary film was written by an expert or a layman with 90.70{\%} accuracy (F1 score), and compare the characteristics of the predicted classes. A variety of standard lexical and syntactic features was used for this supervised learning task... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet