SBERT studies Meaning Representations: Decomposing Sentence Embeddings into Explainable Semantic Features

14 Jun 2022  ·  Juri Opitz, Anette Frank ·

Models based on large-pretrained language models, such as S(entence)BERT, provide effective and efficient sentence embeddings that show high correlation to human similarity ratings, but lack interpretability. On the other hand, graph metrics for graph-based meaning representations (e.g., Abstract Meaning Representation, AMR) can make explicit the semantic aspects in which two sentences are similar. However, such metrics tend to be slow, rely on parsers, and do not reach state-of-the-art performance when rating sentence similarity. In this work, we aim at the best of both worlds, by learning to induce $S$emantically $S$tructured $S$entence BERT embeddings (S$^3$BERT). Our S$^3$BERT embeddings are composed of explainable sub-embeddings that emphasize various semantic sentence features (e.g., semantic roles, negation, or quantification). We show how to i) learn a decomposition of the sentence embeddings into semantic features, through approximation of a suite of interpretable AMR graph metrics, and how to ii) preserve the overall power of the neural embeddings by controlling the decomposition learning process with a second objective that enforces consistency with the similarity ratings of an SBERT teacher model. In our experimental studies, we show that our approach offers interpretability -- while fully preserving the effectiveness and efficiency of the neural sentence embeddings.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods