Scalable Approximations for Generalized Linear Problems

21 Nov 2016  ·  Murat A. Erdogdu, Mohsen Bayati, Lee H. Dicker ·

In stochastic optimization, the population risk is generally approximated by the empirical risk. However, in the large-scale setting, minimization of the empirical risk may be computationally restrictive. In this paper, we design an efficient algorithm to approximate the population risk minimizer in generalized linear problems such as binary classification with surrogate losses and generalized linear regression models. We focus on large-scale problems, where the iterative minimization of the empirical risk is computationally intractable, i.e., the number of observations $n$ is much larger than the dimension of the parameter $p$, i.e. $n \gg p \gg 1$. We show that under random sub-Gaussian design, the true minimizer of the population risk is approximately proportional to the corresponding ordinary least squares (OLS) estimator. Using this relation, we design an algorithm that achieves the same accuracy as the empirical risk minimizer through iterations that attain up to a cubic convergence rate, and that are cheaper than any batch optimization algorithm by at least a factor of $\mathcal{O}(p)$. We provide theoretical guarantees for our algorithm, and analyze the convergence behavior in terms of data dimensions. Finally, we demonstrate the performance of our algorithm on well-known classification and regression problems, through extensive numerical studies on large-scale datasets, and show that it achieves the highest performance compared to several other widely used and specialized optimization algorithms.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods