Scalable Influence Estimation in Continuous-Time Diffusion Networks

If a piece of information is released from a media site, can it spread, in 1 month, to a million web pages? This influence estimation problem is very challenging since both the time-sensitive nature of the problem and the issue of scalability need to be addressed simultaneously. In this paper, we propose a randomized algorithm for influence estimation in continuous-time diffusion networks. Our algorithm can estimate the influence of every node in a network with |V| nodes and |E| edges to an accuracy of $\varepsilon$ using $n=O(1/\varepsilon^2)$ randomizations and up to logarithmic factors O(n|E|+n|V|) computations. When used as a subroutine in a greedy influence maximization algorithm, our proposed method is guaranteed to find a set of nodes with an influence of at least (1-1/e)OPT-2$\varepsilon$, where OPT is the optimal value. Experiments on both synthetic and real-world data show that the proposed method can easily scale up to networks of millions of nodes while significantly improves over previous state-of-the-arts in terms of the accuracy of the estimated influence and the quality of the selected nodes in maximizing the influence.

Results in Papers With Code
(↓ scroll down to see all results)