Scalable language model adaptation for spoken dialogue systems

11 Dec 2018Ankur GandheAriya RastrowBjorn Hoffmeister

Language models (LM) for interactive speech recognition systems are trained on large amounts of data and the model parameters are optimized on past user data. New application intents and interaction types are released for these systems over time, imposing challenges to adapt the LMs since the existing training data is no longer sufficient to model the future user interactions... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet