Scalable Multi-Class Bayesian Support Vector Machines for Structured and Unstructured Data

7 Jun 2018  ·  Martin Wistuba, Ambrish Rawat ·

We introduce a new Bayesian multi-class support vector machine by formulating a pseudo-likelihood for a multi-class hinge loss in the form of a location-scale mixture of Gaussians. We derive a variational-inference-based training objective for gradient-based learning. Additionally, we employ an inducing point approximation which scales inference to large data sets. Furthermore, we develop hybrid Bayesian neural networks that combine standard deep learning components with the proposed model to enable learning for unstructured data. We provide empirical evidence that our model outperforms the competitor methods with respect to both training time and accuracy in classification experiments on 68 structured and two unstructured data sets. Finally, we highlight the key capability of our model in yielding prediction uncertainty for classification by demonstrating its effectiveness in the tasks of large-scale active learning and detection of adversarial images.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here