Scaleable input gradient regularization for adversarial robustness

27 May 2019  ·  Chris Finlay, Adam M. Oberman ·

In this work we revisit gradient regularization for adversarial robustness with some new ingredients. First, we derive new per-image theoretical robustness bounds based on local gradient information. These bounds strongly motivate input gradient regularization. Second, we implement a scaleable version of input gradient regularization which avoids double backpropagation: adversarially robust ImageNet models are trained in 33 hours on four consumer grade GPUs. Finally, we show experimentally and through theoretical certification that input gradient regularization is competitive with adversarial training. Moreover we demonstrate that gradient regularization does not lead to gradient obfuscation or gradient masking.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here