ScaleDepth: Decomposing Metric Depth Estimation into Scale Prediction and Relative Depth Estimation

11 Jul 2024  ·  Ruijie Zhu, Chuxin Wang, Ziyang Song, Li Liu, Tianzhu Zhang, Yongdong Zhang ·

Estimating depth from a single image is a challenging visual task. Compared to relative depth estimation, metric depth estimation attracts more attention due to its practical physical significance and critical applications in real-life scenarios. However, existing metric depth estimation methods are typically trained on specific datasets with similar scenes, facing challenges in generalizing across scenes with significant scale variations. To address this challenge, we propose a novel monocular depth estimation method called ScaleDepth. Our method decomposes metric depth into scene scale and relative depth, and predicts them through a semantic-aware scale prediction (SASP) module and an adaptive relative depth estimation (ARDE) module, respectively. The proposed ScaleDepth enjoys several merits. First, the SASP module can implicitly combine structural and semantic features of the images to predict precise scene scales. Second, the ARDE module can adaptively estimate the relative depth distribution of each image within a normalized depth space. Third, our method achieves metric depth estimation for both indoor and outdoor scenes in a unified framework, without the need for setting the depth range or fine-tuning model. Extensive experiments demonstrate that our method attains state-of-the-art performance across indoor, outdoor, unconstrained, and unseen scenes. Project page: https://ruijiezhu94.github.io/ScaleDepth

PDF Abstract
Task Dataset Model Metric Name Metric Value Global Rank Result Benchmark
Monocular Depth Estimation DDAD ScaleDepth-NK absolute relative error 0.121 # 2
RMSE 6.097 # 2
Delta < 1.25 0.871 # 1
Monocular Depth Estimation DIML Outdoor ScaleDepth-NK Delta < 1.25 0.058 # 1
absolute relative error 1.007 # 1
RMSE 4.344 # 1
Monocular Depth Estimation DIODE Indoor ScaleDepth-NK Delta < 1.25 0.447 # 1
absolute relative error 0.355 # 1
RMSE 1.443 # 1
Monocular Depth Estimation DIODE Outdoor ScaleDepth-NK Delta < 1.25 0.262 # 1
absolute relative error 0.562 # 1
RMSE 8.632 # 1
Monocular Depth Estimation Hypersim ScaleDepth-NK Delta < 1.25 0.413 # 1
absolute relative error 0.381 # 1
RMSE 4.825 # 1
Monocular Depth Estimation IBims-1 ScaleDepth-NK RMSE 0.59 # 3
δ1.25 0.778 # 3
absolute relative error 0.164 # 1
Monocular Depth Estimation KITTI Eigen split ScaleDepth-K absolute relative error 0.048 # 10
RMSE 1.987 # 13
Sq Rel 0.136 # 9
RMSE log 0.073 # 11
Delta < 1.25 0.98 # 9
Delta < 1.25^2 0.998 # 2
Delta < 1.25^3 1.000 # 1
Monocular Depth Estimation NYU-Depth V2 ScaleDepth-N RMSE 0.267 # 15
absolute relative error 0.074 # 21
Delta < 1.25 0.957 # 18
Delta < 1.25^2 0.994 # 15
Delta < 1.25^3 0.999 # 5
log 10 0.032 # 15
Monocular Depth Estimation SUN-RGBD ScaleDepth-NK RMSE 0.359 # 2
absolute relative error 0.129 # 3
Delta < 1.25 0.866 # 2
Monocular Depth Estimation Virtual KITTI 2 ScaleDepth-NK Delta < 1.25 0.834 # 1
absolute relative error 0.12 # 1
RMSE 4.747 # 1

Methods


No methods listed for this paper. Add relevant methods here