Scaling Laws with Hidden Structure

2 Nov 2024  ·  Charles Arnal, Clement Berenfeld, Simon Rosenberg, Vivien Cabannes ·

Statistical learning in high-dimensional spaces is challenging without a strong underlying data structure. Recent advances with foundational models suggest that text and image data contain such hidden structures, which help mitigate the curse of dimensionality. Inspired by results from nonparametric statistics, we hypothesize that this phenomenon can be partially explained in terms of decomposition of complex tasks into simpler subtasks. In this paper, we present a controlled experimental framework to test whether neural networks can indeed exploit such ``hidden factorial structures.'' We find that they do leverage these latent patterns to learn discrete distributions more efficiently, and derive scaling laws linking model sizes, hidden factorizations, and accuracy. We also study the interplay between our structural assumptions and the models' capacity for generalization.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here