Scene Labeling Using Sparse Precision Matrix

CVPR 2016  ·  Nasim Souly, Mubarak Shah ·

Scene labeling task is to segment the image into meaningful regions and categorize them into classes of objects which comprised the image. Commonly used methods typically find the local features for each segment and label them using classifiers. Afterwards, labeling is smoothed in order to make sure that neighboring regions receive similar labels. However, these methods ignore expressive connections between labels and non-local dependencies among regions. In this paper, we propose to use a sparse estimation of precision matrix (also called concentration matrix), which is the inverse of covariance matrix of data obtained by graphical lasso to find interaction between labels and regions. To do this, we formulate the problem as an energy minimization over a graph, whose structure is captured by applying sparse constraint on the elements of the precision matrix. This graph encodes (or represents) only significant interactions and avoids a fully connected graph, which is typically used to reflect the long distance associations. We use local and global information to achieve better labeling. We assess our approach on three datasets and obtained promising results.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here