Scene-LSTM: A Model for Human Trajectory Prediction

12 Aug 2018Huynh ManhGita Alaghband

We develop a human movement trajectory prediction system that incorporates the scene information (Scene-LSTM) as well as human movement trajectories (Pedestrian movement LSTM) in the prediction process within static crowded scenes. We superimpose a two-level grid structure (scene is divided into grid cells each modeled by a scene-LSTM, which are further divided into smaller sub-grids for finer spatial granularity) and explore common human trajectories occurring in the grid cell (e.g., making a right or left turn onto sidewalks coming out of an alley; or standing still at bus/train stops)... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet