Scheduled Policy Optimization for Natural Language Communication with Intelligent Agents

16 Jun 2018  ·  Wenhan Xiong, Xiaoxiao Guo, Mo Yu, Shiyu Chang, Bo-Wen Zhou, William Yang Wang ·

We investigate the task of learning to follow natural language instructions by jointly reasoning with visual observations and language inputs. In contrast to existing methods which start with learning from demonstrations (LfD) and then use reinforcement learning (RL) to fine-tune the model parameters, we propose a novel policy optimization algorithm which dynamically schedules demonstration learning and RL. The proposed training paradigm provides efficient exploration and better generalization beyond existing methods. Comparing to existing ensemble models, the best single model based on our proposed method tremendously decreases the execution error by over 50% on a block-world environment. To further illustrate the exploration strategy of our RL algorithm, We also include systematic studies on the evolution of policy entropy during training.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here